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Abstract

This paper considers thermoelastic damping of the in-plane vibration of rings. The work was motivated by the need to

gain improved understanding of energy-dissipation effects in silicon MEMS resonators, for which a high Q-factor is often

a key design objective. The presented analysis is based on Zener’s classical work on the modelling of thermoelastic loss in

uniform beams, and on a recent refinement of Zener’s analysis by Lifshitz and Roukes. A review of Zener’s and Lifshitz

and Roukes’ analysis is given. The paper then extends the above work by applying the thermoelastic models to the in-plane

vibration of uniform rings of rectangular cross-section. Using both approaches, numerical predictions of modal Q-factors

are developed and compared. The relationships between ring geometry, scale and Q-factor are explored and the ability to

choose resonator dimensions to control Q-factor due to thermoelastic loss is illustrated.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with thermoelastic damping effects on the in-plane vibration of circular rings. Rings are a
common element in many vibrating structures, but the work reported here was particularly motivated by the
need to gain an improved understanding of dissipation effects in a class of rate sensors (gyroscopes) [1,2]
which are used in a wide range of aerospace, automotive and industrial applications. These are based on a
resonator in the form of a silicon ring that is manufactured using micro-electro-mechanical systems (MEMS)
technology [3,4]. Operation of the rate sensor depends on Coriolis coupling between a pair of in-plane modes
of vibration of a ring and a detailed description of the operating principle is given in Ref. [5]. These devices
require a high degree of symmetry in the resonator to minimise frequency splitting between the modes such
that, for example, the effect of material anisotropy can be significant [6] and frequency trimming by mass
adjustment is often required [7]. Further improvement in the performance of these devices requires, amongst
other things, the control of damping in the resonator, partly because of the low level of excitation forces
available to maintain vibration and partly because variations in damping, between modes and with
temperature, adversely affect sensor performance. The ability to accurately model and predict energy
dissipation is therefore a key requirement.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

ar radius of ring (m)
A cross-sectional area (m2)
b width of beam (m)
br radial thickness of ring (m)
Cv heat capacity per unit volume of silicon

(Jm�3K�1)
d depth of beam (m)
dr axial depth of ring (m)
E Young’s modulus of silicon (165GPa)
Eo frequency dependent Young’s modulus

of silicon (Pa)
I second moment area of the cross-section

(m4)
J modulus of compliance (Pa�1)
M bending moment (Nm)
My in-plane bending moment of ring (Nm)
n mode number for eigenfrequencies
t time (s)
T temperature variation (K)
Ta ambient temperature (K)
Tf final temperature (K)
u radial displacement
v tangential displacement
Q quality factor

Greek letters

a thermal expansion coefficient (K�1)
DE relaxation strength in terms of Young’s

modulus
e dilatation
ey circumferential strain
er radial strain
ex, ey principal strains
ez axial strain
Z thermoelastic damping loss factor
y angular coordinate
r density of silicon (2330 kgm�3)
s Stress (Pa)
B Poisson’s ratio
t relaxation time (s)
w thermal diffusivity (m2 s�1)
o frequency of vibration (rad s�1)
on natural frequency of vibration (rad s�1)

Subscript

0 Magnitude
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Three principal sources of energy dissipation can be identified in MEMS resonators, namely gas damping,
support loss and thermoelastic effects. Gas damping is a complex and developing topic for which a useful
introduction is given in Ref. [4], but its effects become negligible at low gas pressures. Support loss represents
energy transmission from a resonator through its support structure. This has been considered in Refs. [8,9] and
can be controlled by careful design. When gas damping and support losses are effectively eliminated, intrinsic
material damping due to thermoelastic effects is the mechanism that imposes an upper limit on the achievable
Q-factor for a resonator. There is a significant and growing interest in thermoelastic damping in MEMS
structures, see for example Refs. [10–12], which deal with resonators that are beam-like in form.

The aims of the present paper are firstly to provide a brief review of thermoelastic damping in beams, then to
extend the application of established thermoelastic damping models to ring structures, and hence to investigate
the effects of geometry and scale on the thermoelastic Q-factors of the in-plane modes of vibration of rings.

2. Brief review of thermoelastic damping in beams

The basic notions of thermoelasticity are well established [13,14]. Thermoelastic damping is linked to
irreversible heat flows within a structure, driven by temperature gradients that are themselves induced by the
strain gradients that arise because of the elastic deformation of the structure as it vibrates. Analysis of the
problem requires the simultaneous solution of the equations of motion for the structure and of the equations
governing heat generation and heat transfer within the structure, these being coupled by the thermoelastic
constitutive equations for the material. In its most general form the problem is not very tractable, but it has
been solved for the flexural vibration of beams.

The first analysis of the damping of beam vibrations due to thermoelastic effects was published by Zener in
1937 [15]. More recently, Lifshitz and Roukes (LR) [16] published a refined version of Zener’s theory in which
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Fig. 1. Local coordinate system of a simply supported beam.
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the fundamental physics was unchanged, but the governing equations were solved in a more rigorous manner.
The LR analysis results in predicted modal Q-factors that differ from Zener’s by between 2% and 20%
depending on conditions that will be discussed later. The following paragraphs give an overview of the key
results from Refs. [15,16] before an analysis of the application of thermoelastic damping theory to rings is
presented in Section 3. It should be noted that the detailed notations used by Zener and LR were different. In
the following review, a notation has been used that is not exactly the same as that used by either Zener or LR,
but is consistent with the notation used in subsequent sections of the present paper.

Consider a simply supported, thin, homogeneous beam with dimensions b, d, l, as shown in Fig. 1 in which
x, y, z are the local coordinate system at any cross-section. Flexural vibration of the beam in the xy-plane
causes cyclic variation of the strain distribution across the section in which elements of the beam on opposite
sides of the neutral axis are alternately in tension and compression. The change in the strain state causes a
change in the internal energy of the beam material which manifests itself as a periodically varying temperature
profile across the section, the tensile regions being cooler than the mean temperature and vice versa for the
compressive regions. The system attempts to reinstate thermal equilibrium via heat flow across the beam’s
section in a process known as thermal relaxation. Vibrational energy is said to be dissipated because of the
irreversibility associated with the temperature change and the subsequent relaxation. It is usually reasonable
to neglect heat transfer to and from the beam’s surroundings because the thermal resistance within the beam
material is much lower than that of the path to the surroundings.

The key relationships of Refs. [15,16] that quantify the above description can be summarised as follows.
Both analyses started with constitutive equations including thermal effects. Assuming that the strain e is a
function only of stress s and temperature T, Zener expressed this as

eðs;TÞ ¼ JRsþ aT , (1)

where JR � 1=E is the material compliance modulus (the subscript R indicating the relaxed state), a is the linear
coefficient of thermal expansion, and T is the variation in temperature from the ambient temperature Ta. Eq. (1) is
equivalent to the generalised Hooke’s law for the stresses and strains in the beam, expressed by LR as

ex ¼
sx

E
þ aT , (2)

ey ¼ ez ¼ �
B
E
sx þ aT , (3)

where B is Poisson’s ratio and the reference directions are as shown in Fig. 1.
For slender beams in flexure it is reasonable to assume that the axial strain ex is a function only of the

distance y from the neutral axis such that

ex ¼ �y
q2Y

qx2
. (4)

Using Eq. (4) in Eq. (2) and re-arranging, it follows that the stress, including the contribution from the
thermoelastic effects, is given by

sx ¼ �Ey
q2Y
qx2
� aTE, (5)

where Y ðx; tÞ represents the lateral displacement of the neutral axis.
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Consider now the equation of motion of a beam undergoing flexural vibration, which can be written in the
usual form as follows:

q2MðY ;TÞ
qx2

� rA
q2Y
qt2
¼ 0. (6)

To account for thermoelastic action, the bending moment M(Y, T) must include the contribution due to the
temperature distribution across the beam section in addition to the usual elastic bending moment. It follows
from Eq. (5) that

MðY ;TÞ ¼

Z
A

ysx dA ¼ �EI
q2Y

qx2
� Eab

Z þd=2

�d=2
yT dy, (7)

where I ¼ bd3=12 is the second moment of area of the beam cross-section.
Assuming that the temperature changes are small compared to ambient such that T5Ta it can be shown

[14] that the general equation governing the temperature distribution in terms of the strain state in the beam
can be written as

qT

qt
� wr2T ¼ �

EaTa

Cvð1� 2BÞ
_e, (8)

where r2ðx; y; zÞ is the Laplacian operator in Cartesian coordinates, w is the thermal diffusivity of the material,
Cv is the heat capacity per unit volume and Ta is the absolute ambient temperature. The dilatation is given by

e ¼ ex þ ey þ ez. (9)

Eq. (8) is derived from the Second Law of Thermodynamics, relating changes in temperature (entropy)
resulting from the rate of change of strain [13,17], and using the Fourier Law of heat conduction to relate the
conversion of strain energy to thermal energy in the material and to heat transfer within the beam. The right-
hand side of Eq. (8) represents heat generation in the material, which can be seen to depend on volume
changes, represented by the dilatation. It follows that shear strain, which is not accompanied by volume
change, does not couple to the thermal field in the material.

Eq. (8) can be simplified by noting that for flexural motion in the xy-plane the temperature gradient in the z-
direction will be zero and the temperature gradients across the section in the y-direction will be much greater
than temperature gradients along the beam in the x-direction. (This latter assumption is valid for low-order
modes of vibration for which the distance between adjacent points of maximum displacement in the mode
shape is large compared to d, but will be less valid for high-order modes.) On this basis the substitution
r2T ¼ q2T=qy2 can be made in Eq. (8). Using Eq. (5) in Eqs. (2) and (3) and Eq. (9), Eq. (8) can be written as

1þ 2DE

1þ B
1� 2B

� �
qT

qt
¼ w

q2T

qy2
þ y

DE

a
q
qt

q2Y
qx2

� �
, (10)

where

DE ¼
Ea2Ta

Cv

(11)

is termed the ‘‘relaxation strength’’ of the elastic modulus (the relative difference between the adiabatic and
isothermal values of Young’s modulus.) Note that DE is dimensionless and 51. If it is assumed that heat
transfer to the surroundings from the surfaces of the beam is negligible then the boundary conditions for Eq.
(10) are:

qT

qy
¼ 0 at y ¼ �

d

2
. (12)

Eqs. (6), (7), (10) and (12) define the thermoelastic damping problem for flexural vibration of the beam. Their
solution for harmonic vibrations, such that

Y ðx; tÞ ¼ Y 0e
iot; Tðx; y; tÞ ¼ T0e

iot, (13)
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yields complex values of o from which, for low damping levels, the modal Q-factor (or equivalently the loss
factor ðZ ¼ Q�1Þ can be determined from

Q�1 ¼ 2
ImðoÞ
ReðoÞ

����
����. (14)

The differences in the final expressions for Q-factor obtained by Zener and by LR are basically due to different
levels of approximation in the solution of Eq. (10) for the temperature profile across the beam section.

Zener adopted a trigonometric series which matched the boundary conditions and then truncated the series
to the first term only. He also made simplifications on the grounds that DE51 and arrived at the following
very simple expression from which the Q-factor can be found:

Q�1 ¼ DE

o0t
1þ o2

0t
2
. (15)

In Eq. (15) o0 is the undamped natural frequency for the relevant mode, which can be found by solving Eqs.
(6) and (7) with the thermoelastic terms omitted, and

t ¼
d2

p2w
. (16)

(The errors involved in the series truncation and simplifications used by Zener in arriving at Eq. (15) are of the
order of 1.5%.)

The interpretation of Eq. (15) is particularly interesting. It can be seen that the Q-factor depends partly on a
combination of material properties (E, Cv, a and w), which may themselves be functions of ambient
temperature Ta. However, the time constant t, associated with the rate of heat transfer across the beam cross-
section, depends on the depth d of the beam (which defines the length of the heat flow path) and, clearly, the
natural frequencies o0 also depend on dimensions as well as material properties. The function o0t=ð1þ o2

0t
2Þ

defines a Debye peak, which has a maximum value at frequency o0 ¼ oMAX ¼ 1=t. The Q-factor for a
particular mode of vibration is therefore significantly affected by the proximity of the natural frequency o0 to
oMAX and it will be a minimum (i.e. maximum damping) when o0 ¼ oMAX. The case where o05oMAX

corresponds to vibration at a frequency where the heat transfer takes place on a timescale that is significantly
shorter than the period of vibration so that the system is essentially isothermal. Conversely, if o0boMAX, the
period of vibration is short compared to the time constant of the heat transfer and the system is essentially
adiabatic. The implications of this point will be explored in more detail later in the paper when rings are
considered.

An alternative view of the mechanism of energy dissipation can be seen from Eq. (7) by noting that, under
harmonic vibration, the component of the bending moment associated with temperature gradient will not be
exactly in-phase with the elastic component. The actual phasing of the components depends on heat transfer
considerations, and the component that is at 901 relative to the elastic restoring moment is effectively a
damping moment.

LR used a different, more rigorous approach to the solution of the governing equations. Based on Eqs.
(10)–(13), and neglecting terms of order D2

E , they demonstrated that the temperature profile can be expressed as

T0ðx; yÞ ¼
DE

a
q2Y 0

qx2
y�

sin ky

k cos kd
2

 !
, (17)

where

k ¼

ffiffiffiffiffiffiffiffiffiffi
�
io
w

s
¼ ð1� iÞ

ffiffiffiffiffi
o
2w

r
. (18)

These expressions were used to derive the following expression for Q�1:

Q�1 ¼ DE

6

x2
�

6

x3
sin xþ sinh x
cos xþ cosh x

� �
, (19)
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where

x ¼ d

ffiffiffiffiffiffi
o0

2w

r
(20)

and the other symbols are as previously defined. Details of the solution process are not given here, but are
mirrored in the solution of the problem for rings that is presented in Section 3 of this paper.

It can be seen from Eqs. (19) and (20) that the Q-factor again depends on a combination of material
properties and dimensions. Ref. [16] presents a comparison of Eqs. (15) and (19). For small values of x,
Eq. (19) gives Q�1! 0:98DELðx

2=
ffiffiffiffiffi
24
p
Þ while for x!1, Q�1 ! 1:23DELðx

2=
ffiffiffiffiffi
24
p
Þ, where

LðzÞ ¼ z=1þ z2. Zener’s solution, Eq. (15), corresponds to Q�1 ¼ DELðx
2=p2=2Þ for all values of x, thus

producing a difference in the range 2–20% between the two solutions, depending on the value of x.
In the next section of the paper thermoelastic damping of the in-plane flexural vibration of rings will be

considered. Expressions for the thermoelastic Q-factor for in-plane flexural modes are found using LR’s
methodology, and also by a simple extension of Zener’s approach.
3. Thermoelastic damping of a circular ring

3.1. Lifshitz and Roukes’ approach

Consider a thin ring of rectangular cross-section with mean radius ar, radial thickness br and axial depth dr

in which the cross-section dimensions are small compared to the circumferential length. The global polar
coordinate system ðr; y; zÞ for the ring is as shown in Fig. 2, and Fig. 3 specifies a local coordinate system
(Gxyz) on the cross-section of the ring. The x-axis is directed radially outwards when the ring is undeformed, y

is normal to the section and z is parallel to the polar axis of the ring.
Because br5ar it is reasonable to make the Euler–Bernoulli assumptions that plane cross-sections remain

plane and perpendicular to the neutral surface during bending, and that shear deformation and rotary inertia
can be neglected. Circular rings are capable of both in-plane and out-of-plane flexural vibrations [18,19] but
only in-plane flexural vibrations are considered in this paper. In-plane flexural vibrations of the ring are
described in terms of the radial uðyÞ and tangential vðyÞ displacement of the mid-point G of the ring cross-
section at circumferential location y, see Fig. 3.

The modes of vibration of a circular ring of uniform rectangular cross-section occur in degenerate pairs with
equal natural frequencies, at a mutual angle of p=2n shown in Fig. 4 where integer n is the mode number. For
the purposes of the present analysis it is only necessary to consider one mode in each pair, the Q-factor (or
equivalently the loss factor) for the companion mode being identical. For circular rings of this type, the radial
Z 

dr

r = ar + x
�

ar br

Fig. 2. Schematic diagram of a thin ring with its global coordinate system.
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and tangential displacements for harmonic vibration at frequency o in the relevant modes can be expressed as

uðy; tÞ ¼ U0ðyÞeiot; vðy; tÞ ¼ V 0ðyÞeiot, (21)

where

U0ðyÞ ¼ U0 sinðnyÞ; V0ðyÞ ¼ V 0 cosðnyÞ (22)

and n ¼ 2; 3; 4; . . . .
For low-order modes of thin rings it is assumed that the circumferential centreline of the ring is inextensible,

in which case u and v are related by the inextensionality relationship

u ¼ �
qv

qy
, (23)

which requires V 0 ¼ �U0=n in Eq. (22). In the following, the displacement mode shape of the ring will be
expressed purely in terms of the radial displacement using Eq. (23). Following the process of analysis used by
LR [16] for beams, as reviewed in Section 2, an expression for the thermoelastic loss factor for rings can be
derived as follows.
z

br

G �

dr

xu

v y

Fig. 3. Local coordinate system on any cross-section of the ring.

n = 4

n = 3

n = 2

Fig. 4. Mode shapes of in-plane flexural vibration of rings with mode number, n.
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When the ring is in static equilibrium, the body temperature is equal to the ambient temperature Ta. When
the ring undergoes in-plane flexural vibrations, the resulting strain field, Eq. (24), gives rise to a variation in
the temperature field Tðx; y; tÞ which is a function of position and time. The coupling between the strain and
temperature fields can be described by an equation having the same general form as Eq. (8) applied to the
particular geometry of the ring. As for a beam, the total strain developed in the ring in the presence of
thermoelastic effects consists of two components, one due to bending stress and one due to thermal expansion.
The circumferential, radial and axial strains including thermoelastic effects can be expressed as follows:

ey ¼
sy
E
þ aT , (24)

er ¼ ez ¼ �
B
E

sy þ aT , (25)

whilst the dilatation e is given by

e ¼ ey þ er þ ez. (26)

For thin rings the circumferential strain ey due to in-plane bending can be assumed to be proportional to x, the
distance from the neutral plane, such that:

ey ¼ �
x

a2
r

q2u

qy2
þ u

� �
. (27)

Using Eq. (27) in Eq. (24) it follows that the circumferential stress including thermo-elastic effects is given by

sy ¼ �
Ex

a2
r

q2u

qy2
þ u

� �
� aTE. (28)

Using Eq. (28) in Eqs. (24) and (25) and Eq. (26), Eq. (8) can be expressed as

qT

qt
� wr2T ¼ �

EaTa

ð1� 2BÞCv

q
qt
�

x

a2
r

q2u

qy2
þ u

� �
þ 2B

x

a2
r

q2u

qy2
þ u

� �
þ 2ð1þ BÞaT

� �
, (29)

where the Laplacian operator now takes the polar coordinate form,

r2 ¼
q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qy2
þ

q2

qz2
. (30)

It is worth noting that for low-order modes where the circumferential distance between antinodes is much
greater than the radial thickness of the ring (i.e. par=nbbr), and the thermal gradients in the plane of the cross-
section will be much larger than gradients along the circumferential direction. Furthermore, the assumed
strain distribution ensures that there will be no gradient in the z-direction. Taking these observations into
account, r2T can be simplified to ðq2T=qr2Þ þ ð1=rÞðqT=qrÞ, and Eq. (29) can be approximated as follows:

1þ 2
Ea2Ta

Cv

1þ B
1� 2B

� �
qT

qt
� w

q2T
qr2
þ

1

r

qT

qr

� �
¼

EaTa

Cv

q
qt

x

a2
r

q2u

qy2
þ u

� �� �
. (31)

By making the substitution r ¼ ar þ x the problem can be defined in the local coordinates of the ring section
and introducing the ‘‘relaxation strength’’ DE ð51Þ defined earlier by Eq. (11), Eq. (31) becomes

1þ 2DE

1þ B
1� 2B

� �
qT

qt
� w

q2T

qx2
þ

1

ar þ x

qT

qx

� �
¼

DE

a
q
qt

x

a2
r

q2u

qy2
þ u

� �� �
. (32)

Noting that DE51 (for silicon at room temperature, DE � 2:02� 10�4) the 2DEð1þ BÞ=ð1� 2BÞ term can be
neglected compared to unity on the left-hand side of Eq. (32). (This will introduce an error of the order D2

E to
the final result.) Thus Eq. (32) can now be rearranged as

q2T
qx2
þ

1

ar þ x

qT

qx
�

1

w
qT

qt
¼ �

1

w
DE

a
q
qt

x

a2
r

q2u

qy2
þ u

� �� �
. (33)
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The term ð1=ar þ xÞðqT=qxÞ on the left-hand side of Eq. (33) requires further consideration. (This term does
not appear in the corresponding equation for a straight beam for which, effectively, ar !1.) In its complete
form the term is nonlinear, which precludes a tractable analytical solution to Eq. (33). However, expanding
ðar þ xÞ�1 into a series of x up to its first order yields 1=arð1� ðx=arÞÞ and noting that x5ar for a thin ring it is
permissible to replace ar þ x in Eq. (33) by ar, thus removing the nonlinearity from the problem. Furthermore,
omitting the first-order derivative term completely allows the development of a simple analytical solution to
the linearised form of Eq. (33). It is shown (see Appendix A) that omission of the ð1=arÞðqT=qxÞ term has
negligible effect, for the parameter ranges considered, on the numerical values of the solution compared to
solutions to the linearised form of Eq. (33) in which the ð1=arÞðqT=qxÞ term is retained. Q-factor predictions
for some practically relevant ring sizes show a difference in magnitude of significantly less than 1%.
It is therefore practical to proceed on the basis of omitting the term in question, allowing Eq. (33) to be
simplified to:

q2T
qx2
�

1

w
qT

qt
¼ �

1

w
DE

a
q
qt

x

a2
r

q2u

qy2
þ u

� �� �
. (34)

Assuming that there is negligible heat flow between the surfaces of the ring and its surrounding and that
thermal equilibrium is only reached via internal heat flow within the ring, the boundary conditions for Eq. (34)
are:

qT

qx
¼ 0 at x ¼ �

br

2
. (35)

It is assumed here that the ring is executing harmonic vibrations with angular frequency o, so that the
temperature variation and radial displacement can be expressed, respectively, as

Tðx; y; tÞ ¼ T0ðx; yÞeiot and uðy; tÞ ¼ U0ðyÞeiot. (36)

Substituting Eq. (36) into Eq. (34) yields

q2T0

qx2
�

io
w

T0 ¼ �
io
w

DE

a
x

a2
r

q2U0

qy2
þU0

� �� �
. (37)

It is clear from Eq. (37) that the general solution for T0 is of the form

T0 ¼
DE

a
x

a2
r

q2U0ðyÞ

qy2
þU0ðyÞ

� �
þ B sinkxþD cos kx, (38)

where k is defined in Eq. (18). Application of the boundary conditions, Eq. (35), to Eq. (36) leads to the
following expression for the temperature profile:

T0ðx; yÞ ¼
DE

a
1

a2
r

q2U0ðyÞ

qy2
þU0ðyÞ

� �
x�

sin kx

k cos ðkbr=2Þ

� �
. (39)

It can be seen that the temperature distribution across the thickness of the ring given by Eq. (39) has the same
form as that given by Eq. (17) for a beam. Fig. 5 shows a plot of the real and imaginary parts and the
magnitude of the temperature profile against the ring’s radial thickness for a 3mm, 120 mm ring at y ¼ 01 and
n ¼ 2 vibrating with an amplitude of U0 ¼ 10 mm. It can be seen that rate of change of temperature is zero at
the boundaries of the ring as prescribed by Eq. (35). Furthermore, the presence of imaginary part in the
temperature profile indicates that there is a phase lag between the displacement and the temperature, which
can be evaluated by tan�1ðImðT0Þ=ReðT0ÞÞ.

To proceed with the analysis, the temperature profile information must be incorporated into the equation of
motion for the ring. For a circular ring undergoing in-plane vibration, taking account of the thermoelastic
effect, the bending moment on a section of the ring (analogous to Eq. (7) for a beam) is

My ¼

Z
xsy dA ¼ �E

Z
A

x2

a2
r

q2u

qy2
þ u

� �
dA� Ea

Z
A

TxdA, (40)

where Eq. (28) has been used.
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Using Eqs. (36) and (39) in Eq. (40), and performing the necessary integrations, it follows that

My ¼ �
EI

a2
r

q2u

qy2
þ u

� �
ð1þ DE ½1þ f ðoÞ�Þ, (41)

where the complex function f ðoÞ is given by

f ðoÞ ¼
24

b3
r k3

kbr

2
� tan

kbr

2

� �� �
. (42)

Note that k, given by Eq. (18), is frequency dependent. Therefore, the moment curvature relationship given by
Eq. (41) is frequency dependent. To take account of this dependence, it is convenient to introduce a frequency-
dependent elastic modulus Eo, where

Eo ¼ Ef1þ DE ½1þ f ðoÞ�g. (43)

When o is very small, f ðoÞ ! 21, and Eo approaches its isothermal value E because sufficient time is
available during each cycle of vibration for relaxation to occur. However, when o!1, f ðoÞ ! 0 and the
modulus tends to its unrelaxed value, Eð1þ DEÞ because there is insufficient time during one vibration period
for significant relaxation to occur [16].

To determine the thermoelastic Q-factor, the equation of motion for the ring must be solved to find the
natural frequencies o, before Eq. (14) can be used. Incorporating the frequency-dependent bending moment (Eq.
(43)) in the derivation of the equation of motion and using Eqs. (21) and (22) it can be shown that the natural
frequencies of the ring undergoing in-plane flexural vibration including thermoelastic effects are given by

o ¼
nðn2 � 1Þ

a2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2
p

ffiffiffiffiffiffiffiffiffi
EoI

rA

s
¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DE ½1þ f ðoÞ�

p
, (44)

where o0 is the isothermal natural frequency (i.e. neglecting thermal effects) given by

o0 ¼
nðn2 � 1Þ

a2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1
p

ffiffiffiffiffiffiffi
EI

rA

s
. (45)

To evaluate the Q-factor for any mode of vibration, Eq. (45) is substituted into Eq. (42) and using the
convenient substitution,

x ¼ br

ffiffiffiffiffiffi
o0

2w

r
, (46)
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which is similar in form to Eq. (20). f ðoÞ in Eqs. (43) and (44) becomes f ðo0Þ, which can be rewritten as

f ðo0Þ ¼ �
6

x3
sinh x� sin x
cosh xþ cos x

þ
6

x3
sinh xþ sin x
coshxþ cos x

�
6

x2

� �
i: (47)

By noting that DE51 for silicon and expanding ð1þ DE ½1þ f ðo0Þ�Þ
1=2 into a series up to first order, the real and

imaginary parts of Eq. (44) are given by

ReðoÞ ¼ o0 1þ
DE

2
1�

6

x3
sinh x� sin x
coshxþ cos x

� �� �
, (48)

ImðoÞ ¼ o0
DE

2

6

x3
sinh xþ sin x
coshxþ cos x

�
6

x2

� �� �
. (49)

Now using Eq. (14) and noting that DE51 such that ReðoÞ is effectively equal to o0, the thermoelastic Q-factor
for the ring can be expressed as

Q�1 ¼ DE

6

x2
�

6

x3
sin xþ sinh x
cos xþ coshx

� �
. (50)

It can be seen that Eq. (50) is the same as Eq. (19) except that the characteristic length is the radial thickness of
the ring instead of the depth of the beam. Next, the expression for thermoelastic Q-factor in a ring will be derived
using Zener’s theory so that numerical predictions can be compared in the next section.

3.2. Simplified analysis based on Zener’s approach

It is evident that the circumferential strain in the ring is directly proportional to x, the radial distance from
the neutral plane as shown in Eq. (27). Effectively, the stress and strain distributions on the cross-section of a
thin ring are the same as those in a thin beam. Alternating temperature gradient exists between the inner and
outer faces of the ring during vibration. Unidirectional heat flow and relaxation across the thickness of the
ring causes energy to be dissipated. Thus, it can be argued that thermoelastic damping in rings undergoing in-
plane flexural vibrations can be modelled using Zener’s theory as developed for slender beams, Eqs. (15) and
(16). On this basis, the Q-factor for a ring is given by Eq. (15) using a relaxation time based on the radial
thickness of the ring, i.e.

t ¼
b2

r

p2w
, (51)

where the natural frequency of the ring is given by Ref. [18], Eq. (45).

4. Numerical examples

In this section, the relationships between Q-factor, ring dimensions and vibration modes for a range of
parameter values relevant to silicon MEMS devices are explored. Based on the theory outlined in Section 3, it
is possible to predict Q-factors for silicon rings as a function of radius ar, radial thickness br, and mode
number n, using both the LR approach (Eqs. (46) and (50)) and Zener’s approach (Eqs. (15) and (51)). Table 1
Table 1

Mechanical and thermal properties of silicon

Young’s modulus, E 165GPa

Density, r 2330kgm�3

Thermal expansion coefficient, a 2.6� 10�6K�1

Heat capacity per unit volume, Cv 1.64� 106 Jm�3K�1

Thermal diffusivity, w 8.6� 10�5m2 s�1
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summarises the mechanical and thermal properties of silicon used in making the subsequent numerical
predictions.

In general, the elastic and thermal properties of materials are known to be temperature dependent.
However, the temperature changes associated with vibration are known to be small ð51KÞ and it is therefore
Table 2

Q-factors (‘000) of rings for n ¼ 2 mode and percentage difference based on LR’s approach

Radius (mm) Radial thickness (mm)

160 140 120 100 80 60 40

5 10.26 10.15 10.15 10.03 12.09 11.93 17.84 17.61 32.62 32.20 75.80 74.81 254.8 251.5

1.1% 1.2% 1.3% 1.3% 1.3% 1.3% 1.3%

4 12.33 12.23 10.37 10.26 10.18 10.06 12.83 12.67 21.60 21.32 48.82 48.18 163.2 161.0

0.8% 1.1% 1.2% 1.3% 1.3% 1.3% 1.3%

3 18.65 18.69 13.76 13.68 10.75 10.64 10.13 10.01 13.65 13.47 28.09 27.72 91.96 90.76

�0.2% 0.6% 1.0% 1.2% 1.3% 1.3% 1.3%

2 38.05 39.49 26.53 26.97 17.87 17.89 12.16 12.06 10.00 98.85 14.15 13.97 41.37 40.83

�3.8% �1.7% �0.1% 0.8% 1.2% 1.3% 1.3%

1 139.0 155.6 94.97 104.4 61.55 65.95 37.23 38.60 20.58 20.69 11.28 11.18 12.64 12.48

�11.9% �9.9% �7.2% �3.7% �0.5% 0.9% 1.3%

Bold-LR’s approach, normal-Zener’s method.
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reasonable to treat the thermal properties a, w and Cv and Young’s modulus E as constants with values
applicable to the ambient temperature Ta. (On this basis the relaxation strength DE (Eq. (11)) has a value of
2:023� 10�4 for crystalline silicon at an ambient temperature of 298K.) It therefore follows from Eqs. (46)
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and (50) and from Eqs. (15) and (51) that the Q-factor for a particular mode of vibration only depends on the
natural frequency o and hence on the ring’s radius ar, and radial thickness br. In the following subsections, the
n ¼ 2 mode will first be considered in detail before considering higher-order modes.

4.1. Variation of Q-factor with dimensions for n ¼ 2 mode

Table 2 presents values of Q-factor for the n ¼ 2 in-plane mode of vibration predicted using the LR
approach (bold font) and Zener’s theory (normal font) for a range of ring dimensions appropriate to rate
sensor applications described in Refs. [1,2]. It also shows the percentage difference between the two, using the
LR value as the baseline. The pattern of behaviour is conveniently displayed in graphical form in Figs. 6–8.

Fig. 6 shows the predicted (LR) Q-factor as a function of radius and radial thickness, from which it can be
seen that Q-factor depends strongly on the ring dimensions. Two regions of relatively high Q-factor are
predicted, separated by a region of relatively lower Q-factor. The higher Q regions correspond to rings with (i)
larger radius and smaller radial thickness and (ii) smaller radius and larger radial thickness. The variation of
Q-factor can be most easily understood on the basis of Zener’s analysis, Eqs. (15) and (51). These show that
the thermoelastic damping effect depends upon the proximity of the natural frequency o0 to the frequency
oMAX at which maximum dissipation occurs and that the damping will be a maximum (i.e. minimum Q-factor)
when o0 ¼ oMAX. Rings with larger radius and lower radial thickness have o05oMAX, thus giving a high Q-
factor. Conversely, rings with smaller radius and larger radial thickness have o0boMAX, therefore also giving
a high Q-factor. In the intermediate region, o0 is relatively closer to oMAX and the rings have lower Q-factors
as illustrated by the middle ground at the centre of the plot in Fig. 6. To further illustrate this point, Fig. 7
shows plots of the natural frequency of the n ¼ 2 mode for different ring radius ar, as a function of radial
thickness br, and also the corresponding value of oMAX. For a ring of given radius, the minimum Q-factor
(maximum energy dissipation) due to thermoelastic damping occurs where the oMAX curve crosses the
relevant natural frequency line. Similar curves can be plotted for other values of n. Note that, although the
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general interpretation given above is valid, the specific dimensions that will give rise to higher or lower
Q-factor depend on material properties and mode number.

Considering Fig. 8, it can be seen that the percentage difference between the Q-factors predicted by the two
methods is less than 2% in most cases for the range of dimensions considered. The difference between the
predictions increases to about 12% for the (thicker) ring with ar ¼ 1mm, br ¼ 160mm. This trend is consistent
with that shown for beams in Ref. [16]. The general level of agreement gives confidence in the validity of the
analyses and, while the Q-factor expression derived using the more rigorous LR approach may be more
accurate, that based on Zener’s theory is easier to apply.

4.2. Higher modes of vibration

Figs. 9–11 show the variation of Q-factor with ring radius and radial thickness for modes with n ¼ 3, 4, 5,
respectively. It can be seen from Eq. (45) that the natural frequency increases with mode number n. In general
terms, this might cause a larger or a smaller Q-factor, depending on the position of the natural frequency
relative to oMAX. Comparing Figs. 6, 9, 10 and 11, it can be seen that the region of low Q-factor shifts from the
central diagonal of the plot in Fig. 6 towards the back right-hand corner, i.e. towards rings with larger radius
and smaller radial thickness. This is because the relevant mode frequency for these dimensions is increasing
and hence moving closer to oMAX. Correspondingly, it can be seen that the Q-factors of smaller rings (1 and
2mm radius) increase with the increase in mode number because they have a high natural frequency, well
above oMAX. It may be noted that radial thicknesses of less than 40 mm would result in higher Q-factors in the
back right-hand region of Figs. 9–11, similar to the pattern seen in Fig. 6, but the physical proportions of such
rings would be less practicable.
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For higher modes, the pattern of percentage difference between predictions based on LR and Zener is
similar to that shown in Fig. 8, as illustrated by Fig. 12 for n ¼ 4.

It is of interest to note here that shear deformation and rotary inertia have not been accounted for in the
analysis. For the rings considered in the numerical examples, the ratio br=ar falls in the range from 0.008 to
0.16 and such rings are not usually categorised as thick [20] for the n ¼ 2 mode. For the higher-order modes of
the thicker rings, the theory will slightly overestimate the natural frequencies, with some small effect on the
predicted Q-factor. However, further investigations are necessary to gain complete understanding of
thermoelastic damping in thick rings.

4.3. Design to reduce damping loss

The foregoing analysis enables the selection of the dimensions needed to give a specified thermoelastic Q-
factor, relative to the minimum thermoelastic Q-factor, for a ring resonator with a particular, specified natural
frequency. The procedure is based on the use of Eqs. (15), (45) and (51). Noting that maximum dissipation
occurs at o ¼ oMAX ¼ 1=t, where t is given by Eq. (51). It follows from Eq. (15) that the maximum loss
factor, ZMAX ¼ ðQ

�1ÞMAX, is given by

ZMAX ¼
DE

2
. (52)

Assume now that it is desired to reduce the loss factor from the maximum value given by Eq. (52) to a lower
value say, Z ¼ ZMAX=p, where p41, for a mode with natural frequency oop. Using Eq. (15), this requirement
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can be expressed in the form

Z ¼
ZMAX

p
¼

DE

2p
¼ DE

oopt
1þ o2

opt2
, (53)

from which it follows that the permissible values of t are:

t ¼
p�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p
oop

. (54)

It now follows from Eq. (51) that the required values of radial thickness br must satisfy

b2
r ¼

p2w
oop

p�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p	 

, (55)

and the corresponding radius ar can be found by rearranging Eq. (45) in the form:

a2
r ¼

nðn2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2
p

br

oop

ffiffiffiffiffiffiffiffi
E

12r

s
. (56)

Examining Eqs. (55) and (56), it can be seen that for a specific operating natural frequency and desired loss
factor, there are two possible ring designs.

Fig. 13 illustrates the possible choices of ring dimensions for an example in which oop ¼ 14 kHz, n ¼ 2 and
p ¼ 1! 10. It can be seen that there is only a single value of radius and corresponding radial thickness at
p ¼ 1, i.e. when maximum dissipation occurs. At lower levels of dissipation, two sets of ring size can be chosen
to fulfil the design requirements. In one case both the radius and radial thickness increase as p increases (large
ring solution); in the other case the radius and radial thickness both decrease with increasing p (small ring
solution).

Fig. 14 shows the percentage increase or decrease in the ring dimensions as p is varied for the 14 kHz
resonator. It can be seen from Fig. 14 that, as p increases, the percentage change in radius and radial thickness
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in the large ring solution is greater than that of the small ring solution. Moreover, the percentage change in
radial thickness is always larger than that of the radius causing the large ring solution to give a thicker ring
(higher br=ar) while the small ring solution to give a thinner ring. This is because, if oop is to remain constant,
then br=a2

r must remain constant, as can be seen from Eq. (56).
5. Conclusions

Analyses of thermoelastic damping previously developed by Zener and by Lifshitz and Roukes have been
extended to cover the in-plane flexural vibration of thin rings, for which analytical expressions for modal
Q-factors have been developed. For a wide range of ring sizes relevant to MEMS resonators, the values of
Q-factor predicted by the two approaches agree to within �2% for low-order flexural modes. The dependence
of modal Q-factor on ring dimensions has been investigated. An application of the developed theory has been
demonstrated in which the ring dimensions can be chosen to select the thermoelastic Q-factor of a resonator
mode with n-value and chosen natural frequency.
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Appendix A

The analysis in this appendix demonstrates that retaining the ð1=arÞðqT0=qxÞ term in linearised form of
Eq. (33), shown for convenience here as Eq. (A.1) such as given below:

q2T0

qx2
þ

1

ar

qT0

qx
�

io
w

T0 ¼ �
io
w

DE

a
x

a2
r

q2U0ðyÞ

qy2
þU0ðyÞ

� �� �
(A.1)

yields Q-factor values that are within 1% of those developed from Eq. (34) in Section 3. Eq. (A.1) governing
the temperature variation across the radial thickness of the ring has a general solution of the form

T0 ¼
DE

a
1

a2
r

q2U0ðyÞ

qy2
þU0ðyÞ

� �
x�

iw
aro

� �
þ eð1=2arÞx½B sin kxþD cos kx�, (A.2)

where B and D are complex functions of

q2U0ðyÞ

qy2
þU0ðyÞ

� �
,

which are determined by the boundary conditions of the problem. Assuming, as before, that there is negligible
heat flow between the surfaces of the ring and its surroundings and that thermal equilibrium is only reached
via internal heat flow within the ring, the boundary conditions for Eq. (A.2) are given by Eq. (35).

Following the analysis steps presented in Section 3, using Eq. (40), the in-plane bending moment on a
section of the ring including the thermoelastic effect, can be shown to be

My ¼ �
E

a2
r

q2u

qy2
þ u

� �
I þ aa2

r

Z
A

YxdA

� �
, (A.3)

where

Y ¼
DE

a
1

a2
r

x�
iw

aro

� �
þ eð1=2arÞx½B0 sin kxþD0 cos kx�, (A.4)

B ¼ B0
q2U0ðyÞ

qy2
þU0ðyÞ

� �
, (A.5)

D ¼ D0
q2U0ðyÞ

qy2
þU0ðyÞ

� �
. (A.6)

It is convenient to rewrite Eq. (A.3) as

My ¼ �
EI

a2
r

q2u

qy2
þ u

� �
½1þC�, (A.7)

where

C ¼
12aa2

r

b3
r

Z br=2

�br=2
YxdA. (A.8)

The evaluation of the function C is best achieved by using readily available integration routines. It is
important to note that C is complex, therefore it can be deduced from Eq. (A.7) that the frequency dependent
modulus is now Eð1þCÞ. The thermoelastic loss factor (or Q-factor) can finally be extracted by

Q�1 ¼ 2
Im

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þC
p� �

Re
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þC
p� �

�����
�����. (A.9)

Table 3 shows the comparison between Q-factors developed from Eq. (34) and Eq. (A.1) for n ¼ 2 for a
range of ring sizes. In all cases, omitting the second term on the left-hand side of Eq. (A.1) results in less than
0.1% loss of accuracy and in most cases the values agree to four significant figures.
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Table 3

Comparison of Q-factors of rings for n ¼ 2

Radius (mm) Radial thickness (mm) Q-factor (Eq. (33)) (‘000) Q-factor (Eq. (A.1)) (‘000)

5 160 10.26 10.25

3 120 10.75 10.75

3 80 13.65 13.65

2 60 14.15 14.15

2 40 41.37 41.38
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